METRICS_TABLES
The METRICS_TABLES table provides the PromQL (Prometheus Query Language) definition for each of the views in the metrics_schema database.
USE information_schema;
DESC metrics_tables;
+------------+--------------+------+------+---------+-------+
| Field      | Type         | Null | Key  | Default | Extra |
+------------+--------------+------+------+---------+-------+
| TABLE_NAME | varchar(64)  | YES  |      | NULL    |       |
| PROMQL     | varchar(64)  | YES  |      | NULL    |       |
| LABELS     | varchar(64)  | YES  |      | NULL    |       |
| QUANTILE   | double       | YES  |      | NULL    |       |
| COMMENT    | varchar(256) | YES  |      | NULL    |       |
+------------+--------------+------+------+---------+-------+
Field description:
- TABLE_NAME: Corresponds to the table name in- metrics_schema.
- PROMQL: The working principle of the monitoring table is to map SQL statements to- PromQLand convert Prometheus results into SQL query results. This field is the expression template of- PromQL. When you query the data of the monitoring table, the query conditions are used to rewrite the variables in this template to generate the final query expression.
- LABELS: The label for the monitoring item. Each label corresponds to a column in the monitoring table. If the SQL statement contains the filter of the corresponding column, the corresponding- PromQLchanges accordingly.
- QUANTILE: The percentile. For monitoring data of the histogram type, a default percentile is specified. If the value of this field is- 0, it means that the monitoring item corresponding to the monitoring table is not a histogram.
- COMMENT: The comment about the monitoring table.
SELECT * FROM metrics_tables LIMIT 5\G
*************************** 1. row ***************************
TABLE_NAME: abnormal_stores
    PROMQL: sum(pd_cluster_status{ type=~"store_disconnected_count|store_unhealth_count|store_low_space_count|store_down_count|store_offline_count|store_tombstone_count"})
    LABELS: instance,type
  QUANTILE: 0
   COMMENT: 
*************************** 2. row ***************************
TABLE_NAME: etcd_disk_wal_fsync_rate
    PROMQL: delta(etcd_disk_wal_fsync_duration_seconds_count{$LABEL_CONDITIONS}[$RANGE_DURATION])
    LABELS: instance
  QUANTILE: 0
   COMMENT: The rate of writing WAL into the persistent storage
*************************** 3. row ***************************
TABLE_NAME: etcd_wal_fsync_duration
    PROMQL: histogram_quantile($QUANTILE, sum(rate(etcd_disk_wal_fsync_duration_seconds_bucket{$LABEL_CONDITIONS}[$RANGE_DURATION])) by (le,instance))
    LABELS: instance
  QUANTILE: 0.99
   COMMENT: The quantile time consumed of writing WAL into the persistent storage
*************************** 4. row ***************************
TABLE_NAME: etcd_wal_fsync_total_count
    PROMQL: sum(increase(etcd_disk_wal_fsync_duration_seconds_count{$LABEL_CONDITIONS}[$RANGE_DURATION])) by (instance)
    LABELS: instance
  QUANTILE: 0
   COMMENT: The total count of writing WAL into the persistent storage
*************************** 5. row ***************************
TABLE_NAME: etcd_wal_fsync_total_time
    PROMQL: sum(increase(etcd_disk_wal_fsync_duration_seconds_sum{$LABEL_CONDITIONS}[$RANGE_DURATION])) by (instance)
    LABELS: instance
  QUANTILE: 0
   COMMENT: The total time of writing WAL into the persistent storage
5 rows in set (0.00 sec)
Was this page helpful?